36 Supplementary Figure 9
36.1 Summary
This is the accessory documentation of Figure S9.
The Figure can be recreated by running the R script plot_SF9.R
:
cd $BASE_DIR
Rscript --vanilla R/fig/plot_SF9.R \
\
2_analysis/pi/50k/ 2_analysis/fasteprr/step4/fasteprr.all.rho.txt.gz
36.2 Details of plot_SF9.R
In the following, the individual steps of the R script are documented. It is an executable R script that depends on the accessory R package GenomicOriginsScripts, as well as on the packages hypoimg, hypogen and patchwork
36.2.1 Config
The scripts start with a header that contains copy & paste templates to execute or debug the script:
#!/usr/bin/env Rscript
# run from terminal:
# Rscript --vanilla R/fig/plot_SF9.R \
# 2_analysis/pi/50k/ \
# 2_analysis/fasteprr/step4/fasteprr.all.rho.txt.gz
# ===============================================================
# This script produces Suppl. Figure 9 of the study "Rapid radiation in a
# highly diverse marine environment" by Hench, Helmkampf, McMillan and Puebla
# ---------------------------------------------------------------
# ===============================================================
# args <- c('2_analysis/pi/50k/',
# '2_analysis/fasteprr/step4/fasteprr.all.rho.txt.gz')
# script_name <- "R/fig/plot_SF9.R"
<- commandArgs(trailingOnly = FALSE) args
The next section processes the input from the command line.
It stores the arguments in the vector args
.
The needed R packages are loaded and the script name and the current working directory are stored inside variables (script_name
, plot_comment
).
This information will later be written into the meta data of the figure to help us tracing back the scripts that created the figures in the future.
Then we drop all the imported information besides the arguments following the script name and print the information to the terminal.
# setup -----------------------
::activate()
renvlibrary(GenomicOriginsScripts)
library(vroom)
library(hypoimg)
library(hypogen)
cat('\n')
<- args[5] %>%
script_name str_remove(.,'--file=')
<- script_name %>%
plot_comment str_c('mother-script = ',getwd(),'/',.)
<- process_input(script_name, args) args
#> ── Script: R/fig/plot_SF9.R ────────────────────────────────────────────
#> Parameters read:
#> ★ 1: 2_analysis/pi/50k/
#> ★ 1: 2_analysis/fasteprr/step4/fasteprr.all.rho.txt.gz
#> ────────────────────────────────────────── /current/working/directory ──
# config -----------------------
<- as.character(args[1])
pi_path <- as.character(args[2]) rho_path
# locate pi data files
<- dir(pi_path, pattern = '^pi.[a-z]{6}.50k') files
# load pi data
<- str_c(pi_path, files) %>%
data ::map(get_pi) %>%
purrrbind_rows()
# compute genome wide average pi for the subplot order
<- data %>%
global_bar filter( BIN_START %% 50000 == 1) %>%
select(N_SITES, PI, spec) %>%
group_by(spec) %>%
summarise(genome_wide_pi = sum(N_SITES*PI)/sum(N_SITES)) %>%
arrange(genome_wide_pi) %>%
ungroup() %>%
mutate(spec = fct_reorder(.f = spec, .x = genome_wide_pi),
scaled_pi = genome_wide_pi/max(genome_wide_pi))
# load recombination data
<- vroom(rho_path, delim = '\t') %>%
rho_data select(-BIN_END)
# merge pi and recombination data
<- data %>%
combined_data # filter pi data to "non-overlapping" windows
filter(BIN_START %% 50000 == 1 ) %>%
# reorder populations by genome wide average pi
mutate(spec = factor(spec, levels = levels(global_bar$spec))) %>%
# merge with recombination data
left_join(rho_data, by = c(CHROM = 'CHROM', BIN_START = 'BIN_START'))
# create table with fish annotations
<- global_bar$spec %>%
grob_tibble2 ::map(fish_plot2) %>%
purrrbind_rows()
# compose final figure
<- combined_data %>%
p ggplot()+
# add fish annotations
geom_hypo_grob2(data = grob_tibble2,
aes(grob = grob, rel_x = .25,rel_y = .75),
angle = 0, height = .5,width = .5)+
# add hex-bin desity layer
geom_hex(bins = 30,color = rgb(0,0,0,.3),
aes(fill=log10(..count..), x = RHO, y = PI))+
# general plot structure (separated by run)
facet_wrap(spec ~., ncol = 3)+
# set axis layout and color scheme
scale_x_continuous(name = expression(rho))+
scale_y_continuous(name = expression(pi))+
::scale_fill_scico(palette = 'berlin') +
scico# customize legend
guides(fill = guide_colorbar(direction = 'horizontal',
title.position = 'top',
barheight = unit(7,'pt'),
barwidth = unit(130,'pt')))+
# general plot layout
theme_minimal()+
theme(legend.position = c(.84,.01),
strip.text = element_blank())
Finally, we can export Figure S9.
# export final figure
hypo_save(filename = 'figures/SF9.pdf',
plot = p,
width = 8,
height = 10,
comment = plot_comment)
# ===============
%>%
combined_data filter( BIN_START %% 50000 == 1) %>%
group_by(spec) %>%
summarise(genom_avg_pi = sum(PI*N_SITES)/sum(N_SITES)) %>%
write_tsv("2_analysis/summaries/pi_globals.tsv")