24 Figure 3
24.1 Summary
This is the accessory documentation of Figure 3.
The Figure can be recreated by running the R script plot_F3.R
from a (bash
terminal):
cd $BASE_DIR
Rscript --vanilla R/fig/plot_F3.R \
\
2_analysis/msmc/output/ \
2_analysis/cross_coalescence/output/ \
2_analysis/msmc/setup/msmc_grouping.txt \
2_analysis/msmc/setup/msmc_cc_grouping.txt 2_analysis/summaries/fst_globals.txt
24.2 Details of plot_F3.R
In the following, the individual steps of the R script are documented. It is an executable R script that depends on the accessory R package GenomicOriginsScripts, BAMMtools and on the package hypoimg.
24.2.1 Config
The scripts start with a header that contains copy & paste templates to execute interactively or debug the script:
#!/usr/bin/env Rscript
# run from terminal:
# Rscript --vanilla R/fig/plot_F3.R \
# 2_analysis/msmc/output/ \
# 2_analysis/cross_coalescence/output/ \
# 2_analysis/msmc/setup/msmc_grouping.txt \
# 2_analysis/msmc/setup/msmc_cc_grouping.txt \
# 2_analysis/summaries/fst_globals.txt
# ===============================================================
# This script produces Figure 3 of the study "Rapid radiation in a highly
# diverse marine environment" by Hench, Helmkampf, McMillan and Puebla
# ---------------------------------------------------------------
# ===============================================================
# args <- c('2_analysis/msmc/output/', '2_analysis/cross_coalescence/output/',
# '2_analysis/msmc/setup/msmc_grouping.txt', '2_analysis/msmc/setup/msmc_cc_grouping.txt',
# '2_analysis/summaries/fst_globals.txt')
# script_name <- "R/fig/plot_F3.R"
# ----------------------------------------
<- commandArgs(trailingOnly = FALSE) args
The next section processes the input from the command line.
It stores the arguments in the vector args
.
The needed R packages are loaded and the script name and the current working directory are stored inside variables (script_name
, plot_comment
).
This information will later be written into the meta data of the figure to help us tracing back the scripts that created the figures in the future.
Then we drop all the imported information besides the arguments following the script name and print the information to the terminal.
# setup -----------------------
::activate()
renvlibrary(GenomicOriginsScripts)
library(hypoimg)
library(hypogen)
library(patchwork)
cat('\n')
<- args[5] %>%
script_name str_remove(.,'--file=')
<- script_name %>%
plot_comment str_c('mother-script = ',getwd(),'/',.)
<- process_input(script_name, args) args
#> ── Script: R/fig/plot_F3.R ──────────────────────────────────────────────
#> Parameters read:
#> ★ 1: 2_analysis/msmc/output/
#> ★ 2: 2_analysis/cross_coalescence/output/
#> ★ 3: 2_analysis/msmc/setup/msmc_grouping.txt
#> ★ 4: 2_analysis/msmc/setup/msmc_cc_grouping.txt
#> ★ 5: 2_analysis/summaries/fst_globals.txt
#> ─────────────────────────────────────────── /current/working/directory ──
The directories for the different data types are received and stored in respective variables. Also, we set a few parameters for the plot layout:
# config -----------------------
<- as.character(args[1])
msmc_path <- as.character(args[2])
cc_path <- as.character(args[3])
msmc_group_file <- as.character(args[4])
cc_group_file <- as.character(args[5]) fst_globals_file
24.2.2 Actual Script Start
# actual script =========================================================
<- read_tsv(msmc_group_file)
msmc_groups <- read_tsv(cc_group_file)
cc_groups <- vroom::vroom(fst_globals_file,delim = '\t',
fst_globals col_names = c('loc','run_prep','mean_fst','weighted_fst')) %>%
separate(run_prep,into = c('pop1','pop2'),sep = '-') %>%
mutate(run = str_c(pop1,loc,'-',pop2,loc),
run = fct_reorder(run,weighted_fst))
# locate cross-coalescence results
<- dir(msmc_path, pattern = '.final.txt.gz')
msmc_files <- dir(cc_path, pattern = '.final.txt.gz') cc_files
# import effective population size data
<- msmc_files %>%
msmc_data map_dfr(.f = get_msmc, msmc_path = msmc_path)
# import cross-coalescence data
<- cc_files %>%
cc_data map_dfr(get_cc, cc_groups = cc_groups, cc_path = cc_path) %>%
mutate( run = factor(run, levels = levels(fst_globals$run)))
# color adjustments for line plots (replace white by gray)
<- clr[!(names(clr) %in% c("flo","tor","tab"))]
clr_alt 'uni'] <- rgb(.8,.8,.8)
clr_alt[<- 'lightgray' clr_ticks
<- msmc_data %>%
p_msmc # remove the two first and last time segments
filter(!time_index %in% c(0:2,29:31)) %>%
ggplot( aes(x=YBP, y=Ne, group = run_nr, colour = spec)) +
# add guides for the logarithmic axes
annotation_logticks(sides="tl", color = clr_ticks, size = plot_lwd) +
# add the msmc data as lines
geom_line(size = .3)+
# set the color scheme
scale_color_manual(NULL,
values = clr_alt, label = sp_labs) +
# format the x axis
scale_x_log10(expand = c(0,0),
breaks = c(10^3, 10^4, 10^5),
position = 'top',
labels = scales::trans_format("log10", scales::math_format(10^.x))
#labels = c("1-3 kya", "10-30 kya", "100-300 kya"),
#name = "Years Before Present"
+
) # format the y axis
scale_y_log10(labels = scales::trans_format("log10", scales::math_format(10^.x)),
breaks = c(10^3,10^4,10^5,10^6)) +
# format the color legend
guides(colour = guide_legend(title.position = "top",
override.aes = list(alpha = 1, size=1),
nrow = 3,
keywidth = unit(7, "pt"),
byrow = TRUE)) +
# set the axis titles
labs(x = "Generations Before Present",
y = expression(Effective~Population~Size~(italic(N[e])))) +
# set plot range
coord_cartesian(xlim = c(250, 5*10^5)) +
# tune plot appreance
theme_minimal()+
theme(text = element_text(size = plot_text_size),
axis.ticks = element_line(colour = clr_ticks),
legend.position = c(1.05,-.175),
legend.justification = c(1,0),
legend.text.align = 0,
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
title = element_text(face = 'bold'),
legend.spacing.y = unit(-5,"pt"),
legend.spacing.x = unit(3, "pt"),
axis.title = element_text(face = 'plain'),
legend.title = element_text(face = 'plain'))
<- cc_data %>%
p_cc # remove the two first and last time segments
filter( !time_index %in% c(0:2,29:31)) %>%
arrange(run_nr) %>%
# attach fst data
left_join(fst_globals %>%
select(run, weighted_fst)) %>%
ggplot(aes(x = YBP, y = Cross_coal, group = run_nr, color = weighted_fst)) +
# add guides for the logarithmic axis
annotation_logticks(sides="b", color = clr_ticks, size = plot_lwd) +
# add the msmc data as lines
geom_line(alpha = 0.2, size = .3)+
# set the color scheme
scale_color_gradientn(name = expression(Global~weighted~italic(F[ST])),
colours = hypogen::hypo_clr_LGs[1:24])+
# format the x axis
scale_x_log10(expand = c(0,0),
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
# set the axis titles
guides(color = guide_colorbar(barheight = unit(3, 'pt'),
barwidth = unit(110, 'pt'),
title.position = 'top'
+
)) # set the axis titles
labs(x = "Generations Before Present",
y = 'Cross-coalescence Rate') +
# set plot range
coord_cartesian(xlim = c(250, 5*10^5)) +
# tune plot appreance
theme_minimal()+
theme(text = element_text(size = plot_text_size),
axis.ticks = element_line(colour = clr_ticks),
legend.position = c(1,.03),
legend.direction = 'horizontal',
legend.justification = c(1,0),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
title = element_text(face = 'bold'),
axis.title = element_text(face = 'plain'),
axis.title.x = element_blank(),
axis.text.x = element_blank(),
legend.title = element_text(face = 'plain'))
# combine panels a and b
<- p_msmc /
p_done +
p_cc plot_annotation(tag_levels = c('a')) &
theme(legend.text = element_text(size = plot_text_size_small),
legend.margin = margin(t = 0, r = 0, b = 0, l = 0, unit = "pt"),
panel.grid.major = element_line(size = plot_lwd),
axis.ticks.x = element_blank(),
panel.background = element_blank(),
plot.background = element_blank())
Finally, we can export Figure 3.
# export figure 3
hypo_save(plot = p_done, filename = 'figures/F3.pdf',
width = f_width_half,
height = f_width_half * .95,
comment = plot_comment,
bg = "transparent",
device = cairo_pdf)